在數學的領域中,若兩個数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“”;当且仅当和相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如,即與是相等的。
注意,有些时候“”并不表示等式。例如,表示在数量级上渐进。因為这裡的符号“”不滿足若且唯若的定義,所以它不等於等于符号;实际上,是没有意义的。请参见大O符号了解这部分内容。
集合上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。
实际上,这是 上唯一满足所有这些性质的关系。
去掉对反对称性的要求,就是等价关系。
相应的,给定任意等价关系,可以构造商集,并且这个等价关系将‘下降为’上的等于。
在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程式。
邏輯形式
謂詞邏輯含有標準的關於相等的公理來形式化萊布尼茨律。萊布尼茨律是由哲學家萊布尼茨在17世紀提出來的。
萊布尼茨的想法是,兩樣物體是同一的,當且僅當它們有完全相同的性質。
形式化這一說法,可以寫成
- 對任意和,當且僅當對任意謂詞 ,當且僅當。
然而,在一階邏輯中,不能對謂詞進行量化。因此,需要使用下述公理:
- 對任意和,若等於,則當且僅當。
這條公理對任意單變量的謂詞都有效,但只定義了萊布尼茨律的一個方向:若和相等,則它們具有相同的性質。
可以通過簡單的假設來定義萊布尼茨律的另一個方向:
- 對任意,等於。
則若和具有相同的性質,則特定的它們關於謂詞是相同的。這裡謂詞為:當且僅當。
由於成立,必定也成立(相同的性質),所以(' '的變量為).
等于的一些基本性质
替代性
对任意量和和任意表达式,若,则(设等式两边都有意义)。
在一阶逻辑中,不能量化像这样的表达式(它可能是个函数谓词)。
一些例子:
- 对任意实数,若,则(这里为)
- 对任意实数,若,则(这里为)
- 对任意实数,若,则(这里为)
- 对任意实数,若且,则(这里为)
自反性
对任意量,。
这个性质通常在数学证明中作为中间步骤。
对称性
例子:如果,那么
传递性
例子:如果,,那么
实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。
尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。
符号的历史
「等于」符号或 「」被用来表示一些算术运算的结果,是由罗伯特·雷科德在1557年发明的。
由于觉得书写文字过于麻烦,雷科德在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。
约等于的符号是或≒,不等于的符号是。
参见
外部链接