% Tschirnhausen cubic illustration
function main()
% linewidth and font size
lw= 6;
fs = 20;
% colors
red=[0.867 0.06 0.14];
blue = [0, 129, 205]/256;
green = [0, 200, 70]/256;
black = [0, 0, 0];
white = 0.99*[1, 1, 1];
N=500; % number of points (don't make it big, code will be slow)
Lx1 = -5; Lx2 = 5; Ly1 = -4; Ly2 = -Ly1;
bd = 0.1;
for i = 1:1
% Set up the plotting window
figure(1); clf; set(gca, 'fontsize', fs, 'linewidth', lw/4);
hold on; axis equal; grid on;
figure(2); clf; hold on; axis equal; axis off;
[X, Y]=meshgrid(linspace(Lx1, Lx2, N), linspace(Ly1, Ly2, N));
x = X; y = Y;
a = 1; b = 1;
Z = y.^2-(x.^3+3*x.^2);
% graph the curves using 'contour' in figure (2)
figure(2); [c, stuff] = contour(X, Y, Z, [0, 0]);
% extract the curves from c and graph them in figure(1) using 'plot'
% need to do this kind of convoluted work since plot2svg can't save
% the result of 'contour' but can save the result of 'plot'
[m, n] = size(c);
while n > 0
l=c(2, 1);
x=c(1,2:(l+1)); y=c(2,2:(l+1)); % get x and y of contours
figure(1); plot(x, y, 'color', red, 'linewidth', lw/2);
c = c(:, (l+2):n);
[m, n] = size(c);
% Lx1 = min(Lx1, min(x) - bd); Lx2 = max(Lx2, max(x) + bd);
% Ly1 = min(Ly1, min(y) - bd); Ly2 = max(Ly2, max(y) + bd);
Lx1 = min(x) - bd; Lx2 = max(x) + bd;
Ly1 = min(y) - bd; Ly2 = max(y) + bd;
end
figure(1); axis equal; axis([-3.2 2 -4 4]);
end
saveas(gcf, 'Tschirnhausen cubic.eps', 'psc2')