费希尔-柯尔莫哥洛夫方程
(重定向自KPP 方程)
费希尔-柯尔莫哥洛夫方程是以英国统计学家罗纳德·费希尔和俄国数学家安德雷·柯尔莫哥洛夫命名的非线性偏微分方程,常见于热传导、燃烧理论、生物学、生态学等领域。某些文献[1][2]中又称费希尔-柯尔莫哥洛夫方程为柯尔莫哥洛夫-彼得罗夫斯基-皮斯库诺夫方程(Kolmogorov–Petrovsky–Piskunov equation),或KPP方程,费希尔-KPP方程。费希尔-柯尔莫哥洛夫方程是费希尔方程的推广形式。费希尔-柯尔莫哥洛夫方程的基本形式为[注 1]:
通过重新定义时间的尺度,可以不失一般性地令参数 D 等于1,因此一些文章中直接将形如 称为KPP方程[1][2]。其他形似KPP方程的,例如 [5] 和 [6] 被称作“KPP型方程(KPP type equation)”或“费希尔-KPP型方程(Fisher-KPP type equation)”。
解析解
形如 的KPP方程有以下解析解[3]:
其中,
行波图
利用Maple的TWSolutions软件包,当m = 2时,可以得到如下的行波图:
相关条目
注释
- ^ Graham所著的《Traveling wave analysis of partial differential equations : numerical and analytical methods with MATLAB and Maple》一书中第八章提到的“Fisher–Kolmogorov Equation”实际上是第十章“Kolmogorov–Petrovskii–Piskunov Equation”(即下式)在 D = 1、a = 1、b = -1、m = q + 1 时的特殊情况。
参考文献
- ^ 1.0 1.1 Ma, W.X.; Fuchssteiner, B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. International Journal of Non-Linear Mechanics. 1996-05, 31 (3): 329–338 [2018-02-09]. doi:10.1016/0020-7462(95)00064-X.
- ^ 2.0 2.1 Unal, ARZU OGUN. On the Kolmogorov–Petrovskii–Piskunov equation (PDF). Commun. Fac. Sci. Univ. Ank. Ser. A1. 2013, 62 (1): 1-10 [2018-02-09]. (原始内容存档 (PDF)于2018-06-02).
- ^ 3.0 3.1 Schiesser, Graham W. Griffiths, William E. Traveling wave analysis of partial differential equations : numerical and analytical methods with MATLAB and Maple. Amsterdam: Academic Press. 2011 [2018-02-09]. ISBN 0123846528.
- ^ Adomian, G. Fisher-Kolmogorov equation. Applied Mathematics Letters. 1995-03, 8 (2): 51–52. doi:10.1016/0893-9659(95)00010-N.
- ^ al.], Mark Freidlin...[et. Surveys in applied mathematics.. New York: Springer. 1995 [2018-02-09]. ISBN 978-1-4615-1991-1. (原始内容存档于2019-12-02).
- ^ Cabre, Xavier; Coulon, Anne-Charline; Roquejoffre, Jean-Michel. Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. arXiv:1209.4809 [math]. 2012-09-21 [2018-02-09]. doi:10.1016/j.crma.2012.10.007. (原始内容存档于2019-08-27).
延伸阅读
- 谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- 阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- 何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759