Struve H function 2D animation
Struve L function
Struve function H 3D plot
Struve L function
Struve H function complex plot
司徒卢威函数 (H α (x )),满足下列非齐次贝塞尔方程 :
x
2
d
2
y
d
x
2
+
x
d
y
d
x
+
(
x
2
−
α
2
)
y
=
4
(
x
2
)
α
+
1
π
Γ
(
α
+
1
2
)
{\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+\left(x^{2}-\alpha ^{2}\right)y={\frac {4\left({\frac {x}{2}}\right)^{\alpha +1}}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}}
H
α
(
x
)
=
∑
m
=
0
∞
(
−
1
)
m
Γ
(
m
+
3
2
)
Γ
(
m
+
α
+
3
2
)
(
x
2
)
2
m
+
α
+
1
{\displaystyle \mathbf {H} _{\alpha }(x)=\sum _{m=0}^{\infty }{\frac {(-1)^{m}}{\Gamma \left(m+{\frac {3}{2}}\right)\Gamma \left(m+\alpha +{\frac {3}{2}}\right)}}\left({\frac {x}{2}}\right)^{2m+\alpha +1}}
变形司徒卢威函数
L
ν
(
z
)
=
(
z
2
)
ν
+
1
∑
k
=
0
∞
1
Γ
(
3
2
+
k
)
Γ
(
3
2
+
k
+
ν
)
(
z
2
)
2
k
{\displaystyle \mathbf {L} _{\nu }(z)=\left({\frac {z}{2}}\right)^{\nu +1}\sum _{k=0}^{\infty }{\frac {1}{\Gamma \left({\frac {3}{2}}+k\right)\Gamma \left({\frac {3}{2}}+k+\nu \right)}}\left({\frac {z}{2}}\right)^{2k}}
积分式
H
α
(
x
)
=
2
(
x
2
)
α
π
Γ
(
α
+
1
2
)
∫
0
π
2
sin
(
x
cos
τ
)
sin
2
α
(
τ
)
d
τ
.
{\displaystyle \mathbf {H} _{\alpha }(x)={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}\sin(x\cos \tau )\sin ^{2\alpha }(\tau )d\tau .}
归递式
司徒卢威函数满足下列归递关系
H
α
−
1
(
x
)
+
H
α
+
1
(
x
)
=
2
α
x
H
α
(
x
)
+
(
x
2
)
α
π
Γ
(
α
+
3
2
)
,
H
α
−
1
(
x
)
−
H
α
+
1
(
x
)
=
2
d
d
x
(
H
α
(
x
)
)
−
(
x
2
)
α
π
Γ
(
α
+
3
2
)
.
{\displaystyle {\begin{aligned}\mathbf {H} _{\alpha -1}(x)+\mathbf {H} _{\alpha +1}(x)&={\frac {2\alpha }{x}}\mathbf {H} _{\alpha }(x)+{\frac {\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {3}{2}}\right)}},\\\mathbf {H} _{\alpha -1}(x)-\mathbf {H} _{\alpha +1}(x)&=2{\frac {d}{dx}}\left(\mathbf {H} _{\alpha }(x)\right)-{\frac {\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {3}{2}}\right)}}.\end{aligned}}}
参考文献
R.M. Aarts and Augustus J.E.M. Janssen. Approximation of the Struve function H1 occurring in impedance calculations. J. Acoust. Soc. Am. 2003, 113 (5): 2635–2637. Bibcode:2003ASAJ..113.2635A . PMID 12765381 . doi:10.1121/1.1564019 .
Abramowitz, Milton; Stegun, Irene Ann (编). Chapter 12 . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first. Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. 1983: 496. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . .
Ivanov, A.B., S/s090700 , Hazewinkel, Michiel (编), 数学百科全书 , Springer , 2001, ISBN 978-1-55608-010-4
Paris, R. B., 司徒卢威函数 , Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions , Cambridge University Press, 2010, ISBN 978-0521192255 , MR 2723248
Struve, H. Beitrag zur Theorie der Diffraction an Fernröhren. Ann. Physik Chemie. 1882, 17 (13): 1008–1016. Bibcode:1882AnP...253.1008S . doi:10.1002/andp.18822531319 .