四乙基氯化铵
四乙基氯化铵 | |
---|---|
IUPAC名 N,N,N-Triethylethanaminium chloride | |
别名 | 氯化四乙基铵 |
识别 | |
CAS号 | 56-34-8 |
PubChem | 5946 |
ChemSpider | 5733 |
SMILES |
|
InChI |
|
InChIKey | YMBCJWGVCUEGHA-REWHXWOFAF |
ChEBI | 78161 |
性质 | |
化学式 | C8H20ClN |
摩尔质量 | 165.7 g·mol−1 |
外观 | 无色潮解固体 |
密度 | 1.08 g/cm3[1] |
熔点 | 360 °C(633 K)(四水[1]) |
溶解性(水) | 极易溶 |
危险性 | |
致死量或浓度: | |
LD50(中位剂量)
|
65 mg/kg(小鼠,腹膜注射) 900 mg/kg(小鼠,口服) |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
四乙基氯化铵,简称TEAC,是一种季铵盐,化学式 (C2H5)4N+Cl−,有时写作Et4N+Cl−。它是吸湿性的无色晶体。在药理学和生理学研究中,它已被用作四乙基铵阳离子的来源,也用于有机化学合成。
制备和结构
TEAC可以由三乙胺和氯乙烷反应而成。[2]
TEAC有两种稳定的水合物,分别是一水合物和四水合物。[3]一水合物TEAC.H2O 的晶体结构已确定,[4] 四水合物TEAC.4H2O也是如此。[5]
Harmon和Gabriele提供了制备大量TEAC.H2O晶体的详细信息,他们对该化合物和相关化合物进行了红外光谱学研究。[6]研究人员也指出,尽管刚提纯的 TEAC.H2O 不含三乙胺盐酸盐,但加热TEAC时会通过霍夫曼消除反应产生少量的三乙胺盐酸盐。
- Cl− + H-CH2-CH2-N+Et3 → Cl-H + H2C=CH2 + Et3N
合成应用
在很大程度上,TEAC的合成应用类似于四乙基溴化铵(TEAB)和四乙基碘化铵(TEAI),尽管其中一种盐在特定反应中可能比另一种更有效。举个例子,TEAC在从芳胺、硝基芳烃和一氧化碳制备二芳基脲的反应中作为助催化剂的产率比TEAB和TEAI高。[7]
在其他示例中,例如以下示例,TEAC不如TEAB或TEAI有效:
- 通过羧酸的碳酸乙烯酯和某些带有酸性N-H的杂环化合物进行2-羟乙基化(-CH2-CH2-OH基团的连接)。[8]
- 相转移催化剂在芴的偕二烷基化中,以及氢氧化钠和卤代烷烃水溶液进行苯胺的N,N-二烷基化和咔唑的N-烷基化。[9]
生物学
与四乙基溴化铵和四乙基碘化铵一样,TEAC已被用作许多临床和药理学研究的四乙基铵离子来源,在四乙基铵盐条目下有更详细的介绍。简而言之,TEAC的神经节阻滞特性已在临床上进行了探索。[10]虽然它现在作为药物基本上已经过时,但它仍然用于生理研究,因为它能够阻断各种组织中的 K+ 通道。[11][12]
毒性
TEAC的毒性是由四乙基铵阳离子导致的,这已被广泛研究。TEAC的急性毒性可以和四乙基溴化铵和四乙基碘化铵比较。这些数据[13]是用于比较目的,详细信息可在四乙基铵盐条目中找到。
参见
参考资料
- ^ 1.0 1.1 The Merck Index, 10th Ed., p.1316, Rahway: Merck & Co.
- ^ Roose, Peter; Eller, Karsten; Henkes, Erhard; Rossbacher, Roland; Höke, Hartmut, Amines, Aliphatic, Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2005, doi:10.1002/14356007.a02_001.pub2
- ^ K. M. Harmon, J. M. Gabriele and J. Harmon (1990). "Hydrogen bonding Part 30. New IR spectra-structure correlations for tetraethylammonium, tetramethylammonium, and N,N-dimethyl-pyrrolidinium fluoride monohydrates, tetraethylammonium chloride monohydrate, and tetramethylammonium hydroxide dihydrate; evidence for a planar (H2O.F−)2 cluster". J. Mol. Struct. 216 53-62.
- ^ J. H. Loehlin and A. Kvick (1978). "Tetraethylammonium chloride monohydrate". Acta Crystallographica Section B 34 3488–3490.
- ^ Y.-S. Lam and T. C. W. Mak (1978). "Crystal data for some tetraethylammonium salt hydrates". 11 193.
- ^ Harmon, Kenneth M.; Gabriele, Julie M. Hydrogen bonding. 11. Infrared study of the water-chloride ion cluster in tetraethylammonium chloride hydrate. Inorganic Chemistry. 1981, 20 (11): 4013–4015. doi:10.1021/ic50225a087.
- ^ H. A. Dieck, R. M. Laine and R. F. Heck (1975). "Low-pressure, palladium-catalyzed N,N'-diarylurea synthesis from nitro compounds, amines, and carbon monoxide". J. Org. Chem. 40 2819–2822.
- ^ T.Yoshino et al. (1977). "Synthetic studies with carbonates. Part 6. Syntheses of 2-hydroxyethyl derivatives by reactions of ethylene carbonate with carboxylic acids or heterocycles in the presence of tetraethylammonium halides or under autocatalytic conditions". J. Chem. Soc., Perkin 1 1266–1272.
- ^ G. Saikia and P. K. Iyer (2010). "Facile C-H alkylation in water: enabling defect-free materials for optoelectronic devices". J. Org. Chem. 75 2714–2717.
- ^ G. K. Moe and W. A. Freyburger (1950). "Ganglionic blocking agents". Pharmacol. Rev. 2 61–95.
- ^ B. Hille (1967). "The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ions". J. Gen. Physiol. 50 1287–1302.
- ^ C. M. Armstrong and B. Hille (1972). "The inner quaternary ammonium receptor in potassium channels of the node of Ranvier". J. Gen. Physiol. 59 388–400.
- ^ O. M. Gruhzit, R. A. Fisken and B. J. Cooper (1948). "Tetraethylammonium chloride [(C2H5)4NCl]. Acute and chronic toxicity in experimental animals". J. Pharmacol. Exp. Ther. 92 103–107.