1 − 2 + 4 − 8 + …
在數學中,1 − 2 + 4 − 8 + …是一個无穷级数,它的每一项都是2的幂而加減號則是交錯地排列。作为几何级数, 它以 1 为首项,-2为公比。
作为实数级数,它发散到无穷,所以在一般意义下它的和不存在。在更广泛的意义下,这一级数有一個廣義的和為⅓。
歷史上的爭論
戈特弗里德·莱布尼茨於1673年已經細想過1 − 2 + 4 − 8 + …這個交替的发散级数。他認為經過從右邊或左邊相減,分別可以得到正無限及負無限,所以兩個答案都是錯的,而整個級數必為有限:
- "如果两个结论里没有一个是可被接受的,或者说因为无法判断哪个结论可被接受,自然一般会选择处在两个结论中间的结论,所以这个级数和是一个有限数。"
莱布尼兹并不是非常肯定这个级数有和,但是他根据墨卡托方法推测它和⅓有关系。[1]在十八世纪,“一个数项级数的和可能等于一个并不是其逐项叠加的结果的有限数”是一个十分普通的观点,尽管现代数学观点同当时的观点并没有任何分别。[2]
当克里斯提安·沃尔夫在1712年阅读了莱布尼兹对格兰迪级数的解法后,[3] 他对此解法非常满意,并设法通过这种方法去寻求更多解决发散级数问题的数学方法(如 1 − 2 + 4 − 8 + 16 − …)。简明地说,如果某人以倒数第二项的函数来表示级数的部分和的话,他得到的结果会是或者 。 这些值的平均值是,然后假设m = n ,讨论到无限后就得到了级数和是 ⅓ 。莱布尼兹的直觉在这时让他避免了在沃尔夫的解法上费力气。他给沃尔夫回信,说他的解法有点意思,但是因几个原因而无效。 相邻的两个部分和并不收敛到任何一个特定值上,同时在任何有限条件下都有n = 2m,而不是n = m。总之,可求和级数的项最终都应收敛到零;即使 1 − 1 + 1 − 1 + … 也可以被表示成这种级数的极限。莱布尼兹劝沃尔夫再好好考虑一下,认为他说不定“可以搞出一些于他于科学都有价值的东西。”[4]
现代方法
等比数列
任何具有规律性、线性和稳定性的求和方法都能对等比数列(几何级数)求和
- .
在这种情况下 a = 1 且 r = −2,所以级数和是 ⅓。
欧拉求和
在他1755年的《Institutiones》上,莱昂哈德·欧拉采用了现在被称为欧拉变换的方式处理1 − 2 + 4 − 8 + …,得到了收敛级数½ − ¼ + ⅛ − 1/16 + …。因为後者的和为⅓,欧拉得出结论,认为1 − 2 + 4 − 8 + … = ⅓。[5]他对於无穷级数的看法不太遵循现代方法。如今,我们称1 − 2 + 4 − 8 + …是欧拉可求和,其欧拉和是⅓。[6]
欧拉变换以正项序列开始:
- a0 = 1,
- a1 = 2,
- a2 = 4,
- a3 = 8, ….
而前向差分序列是
- Δa0 = a1 − a0 = 2 − 1 = 1,
- Δa1 = a2 − a1 = 4 − 2 = 2,
- Δa2 = a3 − a2 = 8 − 4 = 4,
- Δa3 = a4 − a3 = 16 − 8 = 8, …,
这一序列与上一序列正好相同。因此对於每一n,迭代前向差分序列均以Δna0 = 1开始。级数的欧拉变换如下:
上述级数是一收敛等比级数,按常规求和公式得出其和为⅓。
博雷尔和
1 − 2 + 4 − 8 + … 的博雷尔和也是 ⅓;博雷尔于1896年介绍了博雷尔和极限的公式,这是他在关于1 − 1 + 1 − 1 + …[7]后的首个实例之一。
注釋
- ^ Leibniz pp.205-207; Knobloch pp.124-125. 引自《De progressionibus intervallorum tangentium a vertice》,拉丁语原文:“Nunc fere cum neutrum liceat, aut potius cum non possit determinari utrum liceat, natura medium eligit, et totum aequatur finito.”
- ^ Ferraro and Panza,第21页
- ^ 沃尔夫第一次对信件的引用是发表在《Acta Eruditorum》的来自德国哈雷的一封信中,日期为1712年6月12日;Gerhardt,第143-146页。
- ^ 引言是Moore的解释(第2-3页);出自Gerhardt pp.147-148莱布尼兹的信,日期为1712年7月13日,来自汉诺威。
- ^ Euler p.234
- ^ 参见Korevaar p.325
- ^ Smail p. 7.
參考資料
- Euler, Leonhard. Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. 1755 [2010-02-26]. (原始内容存档于2008-02-25).
- Ferraro, Giovanni; Panza, Marco. Developing into series and returning from series: A note on the foundations of eighteenth-century analysis. Historia Mathematica. 2003-02-01, 30 (1) [2022-10-12]. ISSN 0315-0860. doi:10.1016/S0315-0860(02)00017-4. (原始内容存档于2022-10-17) (英语).
- Leibnitz, Gottfried Wilhelm freiherr von. Leibnizens gesammelte Werke, herausg. von G.H. Pertz (C.L. Grotefend, C.I. Gerhardt).. 1860 [2022-10-12]. (原始内容存档于2022-10-12) (拉丁语).
- Knobloch, Eberhard. Beyond Cartesian limits: Leibniz's passage from algebraic to “transcendental” mathematics. Historia Mathematica. The Origins of Algebra: From al-Khwarizmi to Descartes. 2006-02-01, 33 (1) [2022-10-12]. ISSN 0315-0860. doi:10.1016/j.hm.2004.02.001. (原始内容存档于2022-10-17) (英语).
- Korevaar, Jacob. Tauberian Theory: A Century of Developments. Springer. 2004. ISBN 3-540-21058-X.
- Leibniz, Gottfried. S. Probst, E. Knobloch, N. Gädeke , 编. Sämtliche Schriften und Briefe, Reihe 7, Band 3: 1672–1676: Differenzen, Folgen, Reihen. Akademie Verlag. 2003 [2010-02-26]. ISBN 3-05-004003-3. (原始内容存档于2013-10-17).
- Moore, Charles. Summable Series and Convergence Factors. AMS. 1938. LCC QA1 .A5225 V.22.
- Smail, Lloyd. History and Synopsis of the Theory of Summable Infinite Processes. University of Oregon Press. 1925. LCC QA295 .S64.