跳转到内容

原始方程组

维基百科,自由的百科全书

原始方程组Primitive Equations)是非线性的微分方程组,可以模拟地球上的大气流动,许多的大气模型都用到原始方程组。原始方程组主要由三组平衡方程构成:

  1. 连续性方程:描述质量守恒。
  2. 动量守恒:用纳维-斯托克斯方程描述地球表面流体动力流动。其假设是垂直方向上的运动远小于水平方向的运动,且流体层的深度小于球半径
  3. 能量守恒:说明系统的整体温度与热源、热沉(heat sink)之间的关系。

原始方程组线性化后,可以得到拉普拉斯潮汐方程(Laplace's tidal equations),是潮汐理论英语Theory of tides中的特征值问题,以此可以找到气流纬度结构的解析解。

几乎所有形式的原始方程组都涉及五个变量u、v、ω、T、W,以及它们随时间和空间的变化。

原始方程组是由挪威大气学家威廉·皮耶克尼斯提出[1]

定义

  • 是纬向速度(与球体相切,东西方向的速度)
  • 是经向速度(与球体相切,南北方向的速度)
  • 是等压坐标中的垂直速度
  • 温度
  • 压强
  • 是与科里奥利力相关的量,等于。其中是地球的角速度( 每恒星小时弧度),是纬度
  • 是恒压表面上的比热容
  • 是单位时间内每单位质量的热流量
  • 位势
  • 是可降水量
  • 气体常数
  • 艾克纳函数
  • 位温
  • 涡量

引起大气运动的力

引起大气运动的包括气压梯度力重力,和粘滞摩擦力,它们共同构成了大气运动的合力。

气压梯度力导致的加速度,迫使空气从高压区域流向低压区域。在数学上可以写作:

重力导致竖直朝向地心,大小大约为9.81m/s2的加速度。

粘滞摩擦力可以近似为:

结合牛顿第二定律,可以将这些力(在上述等式中表现为这些力所导致的加速度)加总以生成描述该系统的运动方程。该方程式可以写成:

最后可以完成方程组,并得到六个方程和六个变量:

其中n是以mol为单位的体积摩尔浓度,T:=RT是以J/mol为单位的温度等效值。

原始方程组的形式

原始方程组的精确形式取决于所选择的垂直坐标系,例如压强坐标(pressure coordinates),对数压强坐标(log pressure coordinates)或sigma坐标英语Sigma coordinate system。此外,还可以使用雷诺分解英语Reynolds decomposition将速度,温度和位势变量分解为均值和摄动分量。

垂直压强,笛卡尔切线平面

在这种形式下,将压强作为竖直坐标,并将笛卡尔切线平面(即与地球表面上某个点相切的平面)作为水平坐标。这种形式并未考虑地球表面的曲率,但由于其相对简单,因此一些物理过程的可视化公式上。

其中大写的D时间导数是实质导数(material derivative)。系统有五个未知数和五个方程式组成。

  • 流体静力学方程。它是没有垂直背景加速度时,垂直动量方程的特例。
  • 连续性方程,在流体静力的近似下,将水平方向的扩散或收缩,与垂直方向的运动联系起来():

若再加上水蒸气的物质守恒,共有六个方程式,构成了所有数值天气预报方案的基础。

使用sigma坐标系的原始方程组,极坐标立体投影

根据美国《 国家气象服务手册第1号–传真产品》(National Weather Service Handbook No. 1 – Facsimile Products),原始方程组可以简化为以下方程式:

  • 纬向风:
  • 经向风:
  • 温度:

第一项是太阳辐射和长波辐射引起的温度变化,随一天当中的时间变化而变化。 第二,第三和第四项归因于对流。 另外,带有下标的变量T是该平面上的温度变化。每个T实际上是不同的,并且与其各自的平面有关。将其除以各栅格点之间的距离即可得到温度随距离的变化。若将xyz方向温度随距离的变化,乘以各方向的风速后加总就是温度随时间的总变化。

  • 可降水量:

该方程式和符号的标示方戋与温度方程式大致相同。该方程式描述了水在某一时刻从一个地方到另一个地方的运动,而没有考虑水的形态变化。在给定的系统内,水不随时间变化。但是,水的浓度可以随风变化。

  • 压强(Pressure thickness):


上述五个方程的简化,较容易理解模型中发生的事情。诸如温度(潜在温度),可降水量以及一定程度的压强等随风从网格上的一个点移动到另一点。 风的预测试略有不同,其中用到位势,比热,艾克纳函数π和在sigma坐标上的变化。

线性化原始方程组的解

线性化原始方程组的解析解涉及时间和经度的正弦振荡,由与高度和纬度有关的系数进行调整。

其中s分别是纬向波数角频率。该解对应大气波英语Atmospheric wave潮汐

当系数分为高度和纬度分量时,和高度之间的相关性会以波的传播渐逝波的形式出现(视相关条件而定),而纬度相关性会依循霍夫函数英语Hough function

上述的解析解只有在原始方程式线性化,且经过简化时,才能成立。不过这些简化(如无耗散,等温气体)不符合实际大气中的情况。因此若要考虑这些因素,一般会依全球循环模式气候模式英语Climate model,计算其数值解

相关条目

参考资料

  1. ^ Before 1955: Numerical Models and the Prehistory of AGCMs. [2020-07-08]. (原始内容存档于2021-09-24). 
  • Beniston, Martin. From Turbulence to Climate: Numerical Investigations of the Atmosphere with a Hierarchy of Models. Berlin: Springer, 1998.
  • Firth, Robert. Mesoscale and Microscale Meteorological Model Grid Construction and Accuracy. LSMSA, 2006.
  • Thompson, Philip. Numerical Weather Analysis and Prediction. New York: The Macmillan Company, 1961.
  • Pielke, Roger A. Mesoscale Meteorological Modeling. Orlando: Academic Press, Inc., 1984.
  • U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. National Weather Service Handbook No. 1 – Facsimile Products. Washington, DC: Department of Commerce, 1979.

外部链接

【解构自然】33 天气预报背后的公式页面存档备份,存于互联网档案馆