參數方程(英語:Parametric equation)和函數相似,都是由一些在指定的集合的數,稱為參數或自變數,以決定因變數的結果。例如在運動學,參數通常是「時間」,而方程的結果是速度、位置等。
一般地,在平面直角坐標系中,如果曲線上任意一點的坐標x、y都是某個變數t的函數:
並且對於t的每一個允許的取值,由方程組確定的點(x, y)都在這條曲線上,那麼這個方程就叫做曲線的參數方程,聯繫變數x、y的變數t叫做參變數,簡稱參數。相對而言,直接給出點坐標間關係的方程叫普通方程。
例
,表示了平面上半徑為、以原點為圓心的圓。在三維,加入,便是螺旋的圖形。這些式子可以表示成:
如果有一個粒子,沿這個螺旋的路徑而行,直接微分上面的式子便會得到粒子的速度:
及加速度:
參數曲線亦可以是多於一個參數的函數。例如參數表面是兩個參數(s,t)或(u,v)的函數。
譬如一個圓柱:
參數是參變數的簡稱。它是研究運動等一類問題中產生的。質點運動時,它的位置必然與時間有關係,也就是說,質的坐標x,y與時間t之間有函數關係x=f(t),y=g(t),這兩個函數式中的變量t,相對於表示質點的幾何位置的變量x,y來說,就是一個「參與的變量」。這類實際問題中的參變量,被抽象到數學中,就成了參數。我們所學的參數方程中的參數,其任務在於溝通變量x,y及一些常量之間的聯繫,為研究曲線的形狀和性質提供方便。
用參數方程描述運動規律時,常常比用普通方程更為直接簡便。對於解決求最大射程、最大高度、飛行時間或軌跡等一系列問題都比較理想。有些重要但較複雜的曲線(例如圓的漸開線),建立它們的普通方程比較困難,甚至不可能,列出的方程既複雜又不易理解,如圓的漸開線的普通方程。
根據方程畫出曲線十分費時;而利用參數方程把兩個變量x,y間接地聯繫起來,常常比較容易,方程簡單明確,且畫圖也不太困難。
常見參數方程
圓形參數方程在r=1的情形。
- 直線:
- 點斜式過,斜率為的直線:
- 點向式過, 方向向量為的直線:
- 圓:
- 橢圓:
- 雙曲線:
- 拋物線:
- 螺線:
- 擺線:
註:上文中的為已知數,t都為參數, x, y為變量
參見