藍絲黛爾石
藍絲黛爾石 | |
---|---|
基本資料 | |
類別 | 自然元素礦物 |
化學式 | C |
施特龍茨分類 | 01.CB.10b |
晶體分類 | 雙六方二錐 (6/mmm) 赫爾曼–莫甘記號: (6/m 2/m 2/m) |
晶體空間群 | P63/mmc |
晶胞 | a = 2.51 Å, c = 4.12 Å; Z=4 |
性質 | |
顏色 | 晶體為灰色,斷片為蒼黃色至棕色 |
晶系 | 六方晶系 |
莫氏硬度 | 7-8 |
光澤 | 金剛光澤 |
透明性 | 透明 |
比重 | 3.2 |
光學性質 | 單軸(+/-) |
折射率 | n = 2.404 |
參考文獻 | [1][2][3] |
藍絲黛爾石(英語:Lonsdaleite)也譯做郎士德碳,又因晶體結構及特性稱作六方金剛石(英語:hexagonal diamond)、六方碳。藍絲黛爾石是一種六方晶系的金剛石,屬於碳同素異形體的一種構形,咸信為流星上的石墨在墜入地球時所形成。撞擊時的巨大壓力及熱量改變石墨構形形成金剛石,卻又保留了石墨的平行六邊形晶格,並構成了立方的六方晶格。第一次鑑別出藍絲黛爾石是1967年在美國亞利桑那州的巴林傑隕石坑[4],從位在其中的「魔谷隕石」中所發現,並以20世紀的愛爾蘭晶體學家和英國皇家學會凱瑟琳·朗斯代爾(Kathleen Lonsdale)命名,因她使用X射線研究了碳的結構。
藍絲黛爾石具有透明棕黃色的外觀,折射率在2.40至2.41之間,比重在3.2至3.3之間。它的莫氏硬度在7至8之間,而金剛石的莫氏硬度則為10。藍絲黛爾石較低的硬度主要原因是因為天然形成礦石不純且不完美所致。但如果以人工合成則比鑽石硬58%,而抗壓程度也比鑽石高了大約58%。[5]
藍絲黛爾石也已經在實驗室中(1966年或更早; 1967年出版[6])被合成,方法是在靜態壓力機或炸藥中壓縮和加熱石墨[7]。
硬度
礦物學模擬預測藍絲黛爾石在<100>面上比鑽石硬58%,能抵抗152 GPa的壓入壓力,而鑽石在壓入到97 GPa時就會斷裂。[8]IIa鑽石的<111>尖端硬度則為162 GPa,超過了這個值。
藍絲黛爾石的外推特性受到質疑,特別是其極高的硬度,因為在晶體學檢查下的樣品沒有顯示出塊狀六方晶格結構,而是結構缺陷主要是六邊形結構的傳統的立方鑽石結構。[9]對藍絲黛爾石的X射線衍射數據的定量分析表明,它存在大約等量的六方和立方堆積序列。因此,有人提出「堆疊無序的鑽石」是對藍絲黛爾石最準確的結構描述。[10]另一方面,最近使用原位X射線衍射進行的衝擊實驗表明,在與隕石撞擊相當的動態高壓環境中會產生相對較純的藍絲黛爾石。[11][12]
存在
藍絲黛爾石存在於隕石的金剛石上,是一個連結在金剛石上非肉眼可見的顯微晶體。除魔谷隕石外,在美國新墨西哥州的「肯納隕石」(Kenna meteorite)、南極洲維多利亞地的艾倫丘陵隕石77283(Allan Hills (ALH) 77283)上亦有發現。[13]有爭議的克洛維斯彗星假說支持者發現,在墨西哥瓜納華托州奎采奧湖的沉積物中發現了d間距與藍絲黛爾石一致的材料。[14]此外,藍絲黛爾石存在於當地的泥炭沉積物中,被認為是通古斯大爆炸是由流星而非彗星碎片引起的證據。[15][16]
合成
除了通過加壓或使用炸藥壓縮和加熱石墨,[17][18]藍絲黛爾石也可以通過化學氣相沉積[19][20][21]或是聚合物聚甲炔在1,000 °C(1,832 °F)的氬氣氣氛下熱分解而成。[22][23]
2020年,澳大利亞國立大學的研究人員偶然發現使用金剛石壓砧就可以在室溫下生產藍絲黛爾石。[24][25]
2021年,華盛頓州立大學的衝擊物理研究所發表了一篇論文,稱他們創造了足夠大的藍絲黛爾石晶體來測量其硬度,證實它們比普通的立方鑽石更堅硬。[26]
參見
參考
- ^ Lonsdaleite on Mindat.org. [2005-09-10]. (原始內容存檔於2021-03-31).
- ^ Handbook of Mineralogy (PDF). [2013-02-11]. (原始內容存檔 (PDF)於2012-03-30).
- ^ Lonsdaleite data from Webmineral. [2005-09-10]. (原始內容存檔於2021-03-31).
- ^ 存档副本. [2005-09-10]. (原始內容存檔於2006-10-11).
- ^ Carlomagno, G.M.; Brebbia, C.A. Computational Methods and Experimental Measurements XV. WIT Press. 2011. ISBN 978-1-84564-540-3.
- ^ Bundy, F. P.; Kasper, J. S. Hexagonal Diamond—A New Form of Carbon. Journal of Chemical Physics. 1967, 46 (9): 3437. Bibcode:1967JChPh..46.3437B. doi:10.1063/1.1841236.
- ^ He, Hongliang; Sekine, T.; Kobayashi, T. Direct transformation of cubic diamond to hexagonal diamond. Applied Physics Letters. 2002, 81 (4): 610. Bibcode:2002ApPhL..81..610H. doi:10.1063/1.1495078.
- ^ Pan, Zicheng; Sun, Hong; Zhang, Yi & Chen, Changfeng. Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite. Physical Review Letters. 2009, 102 (5): 055503. Bibcode:2009PhRvL.102e5503P. PMID 19257519. doi:10.1103/PhysRevLett.102.055503. 簡明摘要 – Physorg.com (12 February 2009).
- ^ Nemeth, P.; Garvie, L.A.J.; Aoki, T.; Natalia, D.; Dubrovinsky, L.; Buseck, P.R. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nature Communications. 2014, 5: 5447. Bibcode:2014NatCo...5.5447N. PMID 25410324. doi:10.1038/ncomms6447 .
- ^ Salzmann, C.G.; Murray, B.J.; Shephard, J.J. Extent of stacking disorder in diamond. Diamond and Related Materials. 2015, 59: 69–72 [2021-12-21]. Bibcode:2015DRM....59...69S. S2CID 53416525. arXiv:1505.02561 . doi:10.1016/j.diamond.2015.09.007. (原始內容存檔於2021-12-21).
- ^ Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D.O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L.B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E.J.; Goede, S.; Granados, E.; Gregori, G.; Lee, H.J.; Neumayer, P.; Schumaker, W.; Doeppner, T.; Falcone, R.W.; Glenzer, S.H.; Roth, M. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications. 2016, 7: 10970. Bibcode:2016NatCo...710970K. PMC 4793081 . PMID 26972122. doi:10.1038/ncomms10970.
- ^ Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J.M.; Gupta, Yogendra M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Science Advances. 2017-10-01, 3 (10): eaao3561. ISSN 2375-2548. PMC 5659656 . PMID 29098183. doi:10.1126/sciadv.aao3561.
- ^ Kaminskii, F.V.; G.K. Blinova; E.M. Galimov; G.A. Gurkina; Y.A. Klyuev; L.A. Kodina; V.I. Koptil; V.F. Krivonos; L.N. Frolova; A.Y. Khrenov. Polycrystalline aggregates of diamond with lonsdaleite from Yakutian [Sakhan] placers. Mineral. Zhurnal. 1985, 7: 27–36.
- ^ Israde-Alcantara, I.; Bischoff, J.L.; Dominguez-Vazquez, G.; Li, H.-C.; Decarli, P.S.; Bunch, T.E.; et al. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences. 2012, 109 (13): E:738–747. Bibcode:2012PNAS..109E.738I. PMC 3324006 . PMID 22392980. doi:10.1073/pnas.1110614109 .
- ^ Kvasnytsya, Victor; Wirth; Dobrzhinetskaya; Matzel; Jacobsend; Hutcheon; Tappero; Kovalyukh. New evidence of meteoritic origin of the Tunguska cosmic body. Planetary and Space Science. August 2013, 84: 131–140 [2021-12-19]. Bibcode:2013P&SS...84..131K. doi:10.1016/j.pss.2013.05.003. (原始內容存檔於2023-03-04).
- ^ Redfern, Simon. Russian meteor shockwave circled globe twice. BBC News. British Broadcasting Corporation. [28 June 2013]. (原始內容存檔於2022-05-17).
- ^ Bundy, F.P.; Kasper, J.S. Hexagonal diamond — a new form of carbon. Journal of Chemical Physics. 1967, 46 (9): 3437. Bibcode:1967JChPh..46.3437B. doi:10.1063/1.1841236.
- ^ He, Hongliang; Sekine, T.; Kobayashi, T. Direct transformation of cubic diamond to hexagonal diamond. Applied Physics Letters. 2002, 81 (4): 610. Bibcode:2002ApPhL..81..610H. doi:10.1063/1.1495078.
- ^ Bhargava, Sanjay; Bist, H.D.; Sahli, S.; Aslam, M.; Tripathi, H.B. Diamond polytypes in the chemical vapor deposited diamond films. Applied Physics Letters. 1995, 67 (12): 1706. Bibcode:1995ApPhL..67.1706B. doi:10.1063/1.115023.
- ^ Nishitani-Gamo, Mikka; Sakaguchi, Isao; Loh, Kian Ping; Kanda, Hisao; Ando, Toshihiro. Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions. Applied Physics Letters. 1998, 73 (6): 765. Bibcode:1998ApPhL..73..765N. doi:10.1063/1.121994.
- ^ Misra, Abha; Tyagi, Pawan K.; Yadav, Brajesh S.; Rai, P.; Misra, D.S.; Pancholi, Vivek; Samajdar, I.D. Hexagonal diamond synthesis on h-GaN strained films. Applied Physics Letters. 2006, 89 (7): 071911. Bibcode:2006ApPhL..89g1911M. doi:10.1063/1.2218043.
- ^ Nur, Yusuf; Pitcher, Michael; Seyyidoğlu, Semih; Toppare, Levent. Facile synthesis of poly(hydridocarbyne): A precursor to diamond and diamond-like ceramics. Journal of Macromolecular Science, Part A. 2008, 45 (5): 358. S2CID 93635541. doi:10.1080/10601320801946108.
- ^ Nur, Yusuf; Cengiz, Halime M.; Pitcher, Michael W.; Toppare, Levent K. Electrochemical polymerizatıon of hexachloroethane to form poly(hydridocarbyne): A pre-ceramic polymer for diamond production. Journal of Materials Science. 2009, 44 (11): 2774. Bibcode:2009JMatS..44.2774N. S2CID 97604277. doi:10.1007/s10853-009-3364-4.
- ^ Lavars, Nick. Scientists produce rare diamonds in minutes at room temperature. New Atlas. 18 November 2020 [12 February 2021]. (原始內容存檔於2021-01-18).
- ^ McCulloch, Dougal G.; Wong, Sherman; Shiell, Thomas B.; Haberl, Bianca; Cook, Brenton A.; Huang, Xingshuo; Boehler, Reinhard; McKenzie, David R.; Bradby, Jodie E. Investigation of room temperature formation of the ultra-hard nanocarbons diamond and lonsdaleite. Small. 2020, 16 (50): 2004695 [2020-11-21]. ISSN 1613-6829. PMID 33150739. S2CID 226259491. doi:10.1002/smll.202004695. (原始內容存檔於2022-05-07).
- ^ Lab made hexagonal diamonds stiffer than natural cubic diamonds. Phys.org. March 2021 [2021-12-18]. (原始內容存檔於2022-05-26).
外部連結
- Mindat.org (頁面存檔備份,存於網際網路檔案館) accessed 3/13/05.
- Webmineral (頁面存檔備份,存於網際網路檔案館) accessed 3/13/05.
- Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.
- Frondel, C. & U.B. Marvin (1967), Lonsdaleite, a new hexagonal polymorph of diamond. Nature: 214: 587-589
- Frondel, C. & U.B. Marvin (1967), Lonsdaleite, a hexagonal polymorph of diamond, Am.Min.: 52
- Bianconi, P. et al (2004), Diamond and Diamond-like Carbon from a Preceramic Polymer. J. Am. Chem. Soc. Vol. 126, No. 10, 3191-3202