跳至內容

歐拉乘積

維基百科,自由的百科全書

數論中,歐拉乘積(英語:Euler product)是指狄利克雷級數可表示為一指標為素數無窮乘積。這一乘積以瑞士數學家萊昂哈德·歐拉的名字命名,他證明了黎曼ζ函數可表示為此無窮乘積的形式。

定義

假設為一積性函數,則狄利克雷級數

等於歐拉乘積

其中,乘積對所有素數進行,則可表示為

這可以看作形式母函數,形式歐拉乘積展開的存在性與為積性函數兩者互為充要條件。

完全積性函數時可得到一重要的特例。此時等比級數,有

時即為黎曼ζ函數,更一般的情形則是狄利克雷特徵

參考文獻

  • G. Polya, Induction and Analogy in Mathematics Volume 1 Princeton University Press (1954) L.C. Card 53-6388 (A very accessible English translation of Euler's memoir regarding this "Most Extraordinary Law of the Numbers" appears starting on page 91)
  • Apostol, Tom M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, 1976, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001  (Provides an introductory discussion of the Euler product in the context of classical number theory.)
  • G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed., Oxford (1979) ISBN 0-19-853171-0 (Chapter 17 gives further examples.)
  • George E. Andrews, Bruce C. Berndt, Ramanujan's Lost Notebook: Part I, Springer (2005), ISBN 0-387-25529-X
  • G. Niklasch, Some number theoretical constants: 1000-digit values"