一氧化錳

維基百科,自由的百科全書
一氧化錳
IUPAC名
Manganese(II) oxide
氧化錳(II)
別名 氧化亞錳
C.I. 77726
識別
CAS號 1344-43-0  checkY
PubChem 14940
RTECS OP0900000
性質
化學式 MnO
摩爾質量 70.9374 g·mol⁻¹
外觀 綠色晶體
密度 5.37 g/cm3 (23 °C)
熔點 1785 °C[1]
溶解性 不溶
折光度n
D
2.16
結構
晶體結構 石鹽 (立方晶系), cF8
空間群 Fm3m, No. 225
配位幾何 八面體 (Mn2+)
八面體 (O2–)
危險性
歐盟編號 未列出
閃點 不可燃
相關物質
其他陰離子 硫化錳
硒化錳
碲化錳
其他陽離子 一氧化鉻
氧化亞鐵
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

一氧化錳是錳的一種氧化物,化學式MnO,在自然界中以罕見的方錳礦英語manganosite的形式存在。[2]它在磁共振成像、電極材料製備等方面有着潛在應用。[3]

結構

一氧化錳有着與氯化鈉晶體相同的結構,其陰、陽離子都處於八面體的配位環境中,它有着非化學計量比的組成,可由MnO變化到MnO1.045[4]。在118 K以下時,一氧化錳具有反鐵磁性[4],其磁結構英語magnetic structure最初於1951年由中子繞射得到表徵。[5]。其禁帶寬度為4.02 eV,自旋磁矩為4.52 μB[6]

製備

一氧化錳可由氫氣還原錳的高價氧化物得到[4],如:

工業上用氫氣一氧化碳甲烷還原二氧化錳製得:[2]

一氧化錳也可由碳酸錳的熱分解製得:[7]

草酸錳的熱分解根據產物的不同會生成一氧化錳、α-三氧化二錳四氧化三錳,其中在真空中於500 °C分解可以得到一氧化錳。[8]

化學性質

一氧化錳和30%鹽酸反應,放出大量熱,使反應液沸騰。

一氧化錳不溶於水[2],是一種離子型的鹼性氧化物,和酸反應得到相應的二價錳鹽。[4]例如:[9]

它在高溫下和氫氧化鈉反應,生成錳(III)酸鈉並放出氫氣:[10]

它和氯化鐵反應得到鐵酸錳:[11]

它和氧化鋇、錳(III)酸釔於高溫反應,可以得到具有層狀鈣鈦礦結構的化合物YBaMn2O5[12]五氧化二釩偏釩酸銨反應,得到具有鈧釔石英語Thortveitite結構的Mn2V2O7[13] 它可以直接用作反應物來構建其它一些含錳材料,如(H2dmp)0.5Mn(H2PO4)(C2O4)[14]、Na3Mn2SbO6等。[15]

參考文獻

  1. ^ Hay, R.; Howat, D. D.; White, James. Slag systems. Journal of the West of Scotland Iron and Steel Institute, 1934. 41: 97-105. ISSN: 0083-825X.
  2. ^ 2.0 2.1 2.2 Pradyot Patnaik (2002) Handbook of Inorganic Chemicals, McGraw-Hill Professional, ISBN 0070494398
  3. ^ 王濤, 周菊紅. 一氧化錳納米材料的研究進展. 廣州化工, 2016, 44(21):10-12. doi:10.3969/j.issn.1001-9677.2016.21.005
  4. ^ 4.0 4.1 4.2 4.3 Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements 2nd. Oxford:Butterworth-Heinemann. 1997. ISBN 0-7506-3365-4. 
  5. ^ Shull, C. G.; Strauser, W. A.; Wollan, E. O. Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances. Physical Review. 1951, 83 (2): 333–345. ISSN 0031-899X. doi:10.1103/PhysRev.83.333. 
  6. ^ Franchini, C.; Bayer, V.; Podloucky, R.; Paier, J.; Kresse, G. Density functional theory study of MnO by a hybrid functional approach. Physical Review B. 2005, 72 (4). ISSN 1098-0121. doi:10.1103/PhysRevB.72.045132. 
  7. ^ W.H. McCarroll (1994) Oxides- solid sate chemistry, Encyclopedia of Inorganic chemistry Ed. R. Bruce King, John Wiley & Sons ISBN 0-471-93620-0
  8. ^ Ahmad, Tokeer; Ramanujachary, Kandalam V.; Lofland, Samuel E.; Ganguli, Ashok K. Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry. 2004, 14 (23): 3406. ISSN 0959-9428. doi:10.1039/b409010a. 
  9. ^ Sniekers, Jeroen; Malaquias, João C.; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen. Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles. Dalton Transactions. 2017, 46 (8): 2497–2509. ISSN 1477-9226. doi:10.1039/C6DT04781E. 
  10. ^ Kreider, Peter B.; Funke, Hans H.; Cuche, Kevin; Schmidt, Michael; Steinfeld, Aldo; Weimer, Alan W. Manganese oxide based thermochemical hydrogen production cycle. International Journal of Hydrogen Energy. 2011, 36 (12): 7028–7037. ISSN 0360-3199. doi:10.1016/j.ijhydene.2011.03.003. 
  11. ^ Muroi, M.; Street, R.; McCormick, P. G.; Amighian, J. Magnetic properties of ultrafineMnFe2O4powders prepared by mechanochemical processing. Physical Review B. 2001, 63 (18). ISSN 0163-1829. doi:10.1103/PhysRevB.63.184414. 
  12. ^ Chapman, Jon P.; Attfield, J. Paul; Molgg, Michele; Friend, Chris M.; Beales, Tim P. A Ferrimagnetic Manganese Oxide with a Layered Perovskite Structure: YBaMn2O5. Angewandte Chemie International Edition in English. 1996, 35 (21): 2482–2484. ISSN 0570-0833. doi:10.1002/anie.199624821. 
  13. ^ Knowles, Kevin M.; Sil, Anjan; Stöger, Berthold; Weil, Matthias. Crystal structure of the thortveitite-related M phase, (MnxZn1-x)2V2O7 (0.75<x<0.913): a combined synchrotron powder and single-crystal X-ray study. Acta Crystallographica Section C Structural Chemistry. 2018, 74 (10): 1079–1087. ISSN 2053-2296. doi:10.1107/S2053229618010458. 
  14. ^ Luan, Lindong; Zou, Guohong; Lin, Zhien; Cai, Huaqiang; Huang, Hui. Solvent-free synthesis of metal phosphate-oxalates with layered and zeolitic structures. Inorganic Chemistry Communications. 2018, 96: 65–68. ISSN 1387-7003. doi:10.1016/j.inoche.2018.08.003. 
  15. ^ Yadav, Dileep Kumar; Sethi, Aanchal; Shalu, Shalu; Uma, S. New series of honeycomb ordered oxides, Na3M2SbO6 (M(II) = Mn, Fe, (Mn, Fe), (Mn, Co)): synthesis, structure and magnetic properties. Dalton Transactions. 2019, 48 (24): 8955–8965. ISSN 1477-9226. doi:10.1039/C9DT01194C. 

拓展閱讀

  1. Spear, Frank S.; Cheney, John T. A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O. Contributions to Mineralogy and Petrology. 1989, 101 (2): 149–164. ISSN 0010-7999. doi:10.1007/BF00375302. 
  2. Wu, Rongcheng; Qu, Jiuhui; Chen, Yongsheng. Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water. Water Research. 2005, 39 (4): 630–638. ISSN 0043-1354. doi:10.1016/j.watres.2004.11.005. 
  3. Dong, Shun; Tang, Weikang; Hu, Peitao; Zhao, Xiaoguang; Zhang, Xinghong; Han, Jiecai; Hu, Ping. Achieving Excellent Electromagnetic Wave Absorption Capabilities by Construction of MnO Nanorods on Porous Carbon Composites Derived from Natural Wood via a Simple Route. ACS Sustainable Chemistry & Engineering. 2019, 7 (13): 11795–11805. ISSN 2168-0485. doi:10.1021/acssuschemeng.9b02100.