数学上,普吕克坐标是将射影三维空间中的每条线给予6个齐次坐标,也就是一个射影5维空间中的一点。普吕克坐标由尤利乌斯·普吕克于1844年给出。
定义
令L为一直线,穿过点和点。
定义为的行列式。
这蕴涵着和.
考虑六元组。不是所有6个都可以同时为0,因为如果是的话,所有的子矩阵都是零,则该矩阵最多秩为1,这个p及q为不同点的假设不符。
p和q的选取对于6元组的影响只是一个非零因子,如下所示:
考虑和为L上不同点,其中而。 p'和q'不同的假设归结为。 可以检验:
这样,
称W为所有PG(3,K)中的直线的集合。我们现在恰当地定义一个映射:从W到一个K上的5维射影空间:
到克莱因二次曲面的单射性和满射性