糖皮质激素受体

本页使用了标题或全文手工转换
维基百科,自由的百科全书
糖皮質激素受體
已知的結構
PDB直系同源搜索: PDBe RCSB
識別號
别名NR3C1;, GCCR, GCR, GCRST, GR, GRL, nuclear receptor subfamily 3 group C member 1, Glucocorticoid Receptor
外部IDOMIM138040 MGI95824 HomoloGene30960 GeneCardsNR3C1
相關疾病
glucocorticoid resistance[1]
為以下藥物的標靶
莫米松、​去炎松、​泼尼松龙[2]
布地奈德、​環索奈德、​丙酸氯倍他索、​皮質醇、​11-脱氧皮质酮、​去羥米松、​地塞米松、​difluprednate、​氟轻松、​氟欣諾能、​fluorometholone、​氟替卡松、​丙酸氟替卡松、​甲泼尼龙、​泼尼松龙、​强的松、​RU28362、​去炎松、​曲安奈德、​倍他米松、​美服培酮[3]
基因位置(人类
5號染色體
染色体5號染色體[4]
5號染色體
糖皮質激素受體的基因位置
糖皮質激素受體的基因位置
基因座5q31.3起始143,277,931 bp[4]
终止143,435,512 bp[4]
RNA表达模式




查阅更多表达数据
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

NM_008173
​NM_001361209
​NM_001361210
​NM_001361211
​NM_001361212

蛋白序列

NP_001348138
​NP_001348139
​NP_001348140
​NP_001348141
​NP_032199

基因位置​(UCSC)Chr 5: 143.28 – 143.44 MbChr 18: 39.54 – 39.65 Mb
PubMed​查找[6][7]
維基數據
檢視/編輯人類檢視/編輯小鼠

糖皮质激素受体(英語:Glucocorticoid receptor, GR),也称为NR3C1核受体亚家族3,C组,成员1),是皮质醇和其他糖皮质激素结合的受体[8]

GR几乎在身体的每个细胞中都有表达,并调节控制发育、新陈代谢和免疫反应的基因。因为受体基因以多种形式表达,它在身体的不同部位有许多不同的(多效性)作用。[9]

当糖皮质激素与GR结合时,其主要作用机制是调节基因转录。[10]未结合的受体存在于细胞的胞质溶胶中。受体与糖皮质激素结合后,受体-糖皮质激素复合物可以采取两种途径中的任一种。活化的GR复合物上调细胞核中抗炎蛋白的表达或抑制胞质溶胶中促炎蛋白的表达(通过阻止其他转录因子从细胞质转移到细胞核中)。[11]

在人体内,GR蛋白由位于5号染色体上的NR3C1基因编码。[12][13]

结构

与其他类固醇受体一样,[14]糖皮质激素受体在结构上是模块化的,[15]并包含以下结构域(标记为A - F):

  • A/B - N端调控域
  • C - DNA结合域(DBD)
  • D - 铰链区
  • E - 配体结合域(LBD)
  • F - C端结构域

配体结合和反应

在没有激素的情况下,糖皮质激素受体位于与多种蛋白质复合的细胞质中,包括热休克蛋白90(Hsp90)、热休克蛋白70(Hsp70)和蛋白FKBP4FK506结合蛋白4)。[16]内源性糖皮质激素皮质醇通过细胞膜扩散到细胞质中并与糖皮质激素受体结合,导致热休克蛋白释放。所得的活化形式GR具有两种主要的作用机制,反式激活和反式阻遏,[17][18]如下所述。

转录激活

一种直接的作用机制包括受体的同二聚化、通过主动转运进入细胞核的易位以及与激活基因转录的特定 DNA 反应元件的结合。该作用机制被称为转录激活。生物反应取决于细胞类型。

转录抑制

在没有激活的GR的情况下,其他转录因子如NF-κB或AP-1本身能够反式激活靶基因。[19]

临床意义

GR在家族性糖皮质激素抵抗中异常。[20]

在中枢神经系统结构中,糖皮质激素受体作为神经内分泌整合的新代表引起了人们的兴趣,作为内分泌影响的主要成分。该受体现在与对压力源的短期和长期适应有关,可能对理解心理障碍至关重要,包括部分或所有亚型抑郁症和创伤后应激障碍(PTSD)。[21]库欣病典型的情绪失调等长期观察结果证明了皮质类固醇在调节心理状态中的作用。最近的进展表明在神经水平上与去甲肾上腺素血清素的相互作用。[22][23]

先兆子痫(一种常见于孕妇的高血压疾病)中,可能靶向该蛋白质的miRNA序列水平在母亲的血液中升高。相反,胎盘提高了含有这种miRNA的外泌体的水平,可能导致分子翻译的抑制。该信息的临床意义尚未明确。[24]

激动剂和拮抗剂

地塞米松和其他皮质类固醇是激动剂,[25]米非司酮酮康唑是GR的拮抗剂。[26]

相互作用

糖皮质激素受体与以下物质相互作用:

研究

2022年6月28日发表的一篇论文表明,NR3C1可能是肌萎缩侧索硬化(ALS)的潜在靶点之一。使用支持AI的生物靶点发现平台,发现NR3C1在CNS fALS和sALS中均被上调。通过靶点发现,可以进一步设计多种途径和药物来治疗ALS。[64]

参考文献

  1. ^ 與糖皮質激素受體相關的疾病;在維基數據上查看/編輯參考. 
  2. ^ 對Glucocorticoid receptor起作用的藥物;在維基數據上查看/編輯參考. 
  3. ^ 對Nuclear receptor subfamily 3 group C member 1起作用的藥物;在維基數據上查看/編輯參考. 
  4. ^ 4.0 4.1 4.2 GRCh38: Ensembl release 89: ENSG00000113580 - Ensembl, May 2017
  5. ^ 5.0 5.1 5.2 GRCm38: Ensembl release 89: ENSMUSG00000024431 - Ensembl, May 2017
  6. ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  7. ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  8. ^ Nicolaides, Nicolas C.; Chrousos, George; Kino, Tomoshige. Glucocorticoid Receptor. Feingold, Kenneth R. (编). Endotext. South Dartmouth (MA): MDText.com, Inc. 2000. PMID 25905394. 
  9. ^ Oakley, Robert H.; Cidlowski, John A. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. The Journal of Allergy and Clinical Immunology. 2013-11, 132 (5). ISSN 1097-6825. PMC 4084612可免费查阅. PMID 24084075. doi:10.1016/j.jaci.2013.09.007. 
  10. ^ Lu, Nick Z.; Wardell, Suzanne E.; Burnstein, Kerry L.; Defranco, Donald; Fuller, Peter J.; Giguere, Vincent; Hochberg, Richard B.; McKay, Lorraine; Renoir, Jack-Michel; Weigel, Nancy L.; Wilson, Elizabeth M. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacological Reviews. 2006-12, 58 (4) [2022-07-11]. ISSN 0031-6997. PMID 17132855. doi:10.1124/pr.58.4.9. (原始内容存档于2022-05-28). 
  11. ^ Ingawale, Deepa K.; Mandlik, Satish K.; Patel, Snehal S. An emphasis on molecular mechanisms of anti-inflammatory effects and glucocorticoid resistance. Journal of Complementary & Integrative Medicine. 2015-03, 12 (1) [2022-07-11]. ISSN 1553-3840. PMID 25503867. doi:10.1515/jcim-2014-0051. (原始内容存档于2022-07-11). 
  12. ^ Hollenberg, S. M.; Weinberger, C.; Ong, E. S.; Cerelli, G.; Oro, A.; Lebo, R.; Thompson, E. B.; Rosenfeld, M. G.; Evans, R. M. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985-12-19, 318 (6047) [2022-07-11]. ISSN 0028-0836. PMC 6165583可免费查阅. PMID 2867473. doi:10.1038/318635a0. (原始内容存档于2022-07-11). 
  13. ^ Francke, U.; Foellmer, B. E. The glucocorticoid receptor gene is in 5q31-q32 [corrected]. Genomics. 1989-05, 4 (4) [2022-07-11]. ISSN 0888-7543. PMID 2744768. doi:10.1016/0888-7543(89)90287-5. (原始内容存档于2022-07-11). 
  14. ^ Kumar, R.; Thompson, E. B. The structure of the nuclear hormone receptors. Steroids. 1999-05, 64 (5) [2022-07-10]. ISSN 0039-128X. PMID 10406480. doi:10.1016/s0039-128x(99)00014-8. (原始内容存档于2022-07-10). 
  15. ^ Kumar, Raj; Thompson, E. Brad. Gene regulation by the glucocorticoid receptor: structure:function relationship. The Journal of Steroid Biochemistry and Molecular Biology. 2005-04, 94 (5) [2022-07-10]. ISSN 0960-0760. PMID 15876404. doi:10.1016/j.jsbmb.2004.12.046. (原始内容存档于2022-07-10). 
  16. ^ Pratt, W. B.; Morishima, Y.; Murphy, M.; Harrell, M. Chaperoning of glucocorticoid receptors. Handbook of Experimental Pharmacology. 2006, (172) [2022-07-11]. ISSN 0171-2004. PMID 16610357. doi:10.1007/3-540-29717-0_5. (原始内容存档于2022-07-11). 
  17. ^ Buckingham, Julia C. Glucocorticoids: exemplars of multi-tasking. British Journal of Pharmacology. 2006-01,. 147 Suppl 1. ISSN 0007-1188. PMC 1760726可免费查阅. PMID 16402112. doi:10.1038/sj.bjp.0706456. 
  18. ^ Hayashi, Ryuji; Wada, Hiroo; Ito, Kazuhiro; Adcock, Ian M. Effects of glucocorticoids on gene transcription. European Journal of Pharmacology. 2004-10-01, 500 (1-3) [2022-07-11]. ISSN 0014-2999. PMID 15464020. doi:10.1016/j.ejphar.2004.07.011. (原始内容存档于2022-07-11). 
  19. ^ Ray, A.; Prefontaine, K. E. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America. 1994-01-18, 91 (2). ISSN 0027-8424. PMID 8290595. doi:10.1073/pnas.91.2.752. 
  20. ^ Mendonca, Berenice B.; Leite, Maristela V.; de Castro, Margaret; Kino, Tomoshige; Elias, Lucila L. K.; Bachega, Tania A. S.; Arnhold, Ivo J. P.; Chrousos, George P.; Latronico, Ana Claudia. Female pseudohermaphroditism caused by a novel homozygous missense mutation of the GR gene. The Journal of Clinical Endocrinology and Metabolism. 2002-04, 87 (4) [2022-07-11]. ISSN 0021-972X. PMID 11932321. doi:10.1210/jcem.87.4.8379. (原始内容存档于2022-03-07). 
  21. ^ Maletic, V.; Robinson, M.; Oakes, T.; Iyengar, S.; Ball, S. G.; Russell, J. Neurobiology of depression: an integrated view of key findings. International Journal of Clinical Practice. 2007-12, 61 (12) [2022-07-11]. ISSN 1368-5031. PMC 2228409可免费查阅. PMID 17944926. doi:10.1111/j.1742-1241.2007.01602.x. (原始内容存档于2022-07-11). 
  22. ^ Savitz, Jonathan; Lucki, Irwin; Drevets, Wayne C. 5-HT(1A) receptor function in major depressive disorder. Progress in Neurobiology. 2009-05, 88 (1) [2022-07-11]. ISSN 1873-5118. PMC 2736801可免费查阅. PMID 19428959. doi:10.1016/j.pneurobio.2009.01.009. (原始内容存档于2022-07-11). 
  23. ^ Schechter, Daniel S.; Moser, Dominik A.; Paoloni-Giacobino, Ariane; Stenz, Ludwig; Gex-Fabry, Marianne; Aue, Tatjana; Adouan, Wafae; Cordero, María I.; Suardi, Francesca; Manini, Aurelia; Sancho Rossignol, Ana. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure. Frontiers in Psychology. 2015, 6. ISSN 1664-1078. PMC 4447998可免费查阅. PMID 26074844. doi:10.3389/fpsyg.2015.00690. 
  24. ^ Salomon, Carlos; Guanzon, Dominic; Scholz-Romero, Katherin; Longo, Sherri; Correa, Paula; Illanes, Sebastian E.; Rice, Gregory E. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. The Journal of Clinical Endocrinology and Metabolism. 2017-09-01, 102 (9) [2022-07-11]. ISSN 1945-7197. PMID 28531338. doi:10.1210/jc.2017-00672. (原始内容存档于2022-06-20). 
  25. ^ Kalavantavanich, K.; Schramm, C. M. Dexamethasone potentiates high-affinity beta-agonist binding and g(s)alpha protein expression in airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2000-05, 278 (5). ISSN 1040-0605. PMID 10781443. doi:10.1152/ajplung.2000.278.5.L1101. 
  26. ^ Duret, Cedric; Daujat-Chavanieu, Martine; Pascussi, Jean-Marc; Pichard-Garcia, Lydiane; Balaguer, Patrick; Fabre, Jean-Michel; Vilarem, Marie-José; Maurel, Patrick; Gerbal-Chaloin, Sabine. Ketoconazole and miconazole are antagonists of the human glucocorticoid receptor: consequences on the expression and function of the constitutive androstane receptor and the pregnane X receptor. Molecular Pharmacology. 2006-07, 70 (1) [2022-07-11]. ISSN 0026-895X. PMID 16608920. doi:10.1124/mol.105.022046. (原始内容存档于2022-06-15). 
  27. ^ Kullmann, M.; Schneikert, J.; Moll, J.; Heck, S.; Zeiner, M.; Gehring, U.; Cato, A. C. RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis. The Journal of Biological Chemistry. 1998-06-05, 273 (23). ISSN 0021-9258. PMID 9603979. doi:10.1074/jbc.273.23.14620. 
  28. ^ Schneikert, J.; Hübner, S.; Langer, G.; Petri, T.; Jäättelä, M.; Reed, J.; Cato, A. C. Hsp70-RAP46 interaction in downregulation of DNA binding by glucocorticoid receptor. The EMBO journal. 2000-12-01, 19 (23) [2022-07-11]. ISSN 0261-4189. PMID 11101523. doi:10.1093/emboj/19.23.6508. (原始内容存档于2021-11-25). 
  29. ^ Boruk, M.; Savory, J. G.; Haché, R. J. AF-2-dependent potentiation of CCAAT enhancer binding protein beta-mediated transcriptional activation by glucocorticoid receptor. Molecular Endocrinology (Baltimore, Md.). 1998-11, 12 (11) [2022-07-11]. ISSN 0888-8809. PMID 9817600. doi:10.1210/mend.12.11.0191. (原始内容存档于2022-07-11). 
  30. ^ Almlöf, T.; Wallberg, A. E.; Gustafsson, J. A.; Wright, A. P. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors. Biochemistry. 1998-06-30, 37 (26) [2022-07-11]. ISSN 0006-2960. PMID 9649342. doi:10.1021/bi973029x. (原始内容存档于2022-02-23). 
  31. ^ 31.0 31.1 Hulkko, S. M.; Wakui, H.; Zilliacus, J. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function. The Biochemical Journal. 2000-08-01,. 349 Pt 3. ISSN 0264-6021. PMC 1221218可免费查阅. PMID 10903152. doi:10.1042/bj3490885. 
  32. ^ Lin, Ding-Yen; Lai, Ming-Zong; Ann, David K.; Shih, Hsiu-Ming. Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. The Journal of Biological Chemistry. 2003-05-02, 278 (18). ISSN 0021-9258. PMID 12595526. doi:10.1074/jbc.M300387200. 
  33. ^ Jibard, N.; Meng, X.; Leclerc, P.; Rajkowski, K.; Fortin, D.; Schweizer-Groyer, G.; Catelli, M. G.; Baulieu, E. E.; Cadepond, F. Delimitation of two regions in the 90-kDa heat shock protein (Hsp90) able to interact with the glucocorticosteroid receptor (GR). Experimental Cell Research. 1999-03-15, 247 (2) [2022-07-11]. ISSN 0014-4827. PMID 10066374. doi:10.1006/excr.1998.4375. (原始内容存档于2022-07-11). 
  34. ^ Kanelakis, Kimon C.; Shewach, Donna S.; Pratt, William B. Nucleotide binding states of hsp70 and hsp90 during sequential steps in the process of glucocorticoid receptor.hsp90 heterocomplex assembly. The Journal of Biological Chemistry. 2002-09-13, 277 (37). ISSN 0021-9258. PMID 12093808. doi:10.1074/jbc.M204164200. 
  35. ^ Hecht, K.; Carlstedt-Duke, J.; Stierna, P.; Gustafsson, J.; Brönnegârd, M.; Wikström, A. C. Evidence that the beta-isoform of the human glucocorticoid receptor does not act as a physiologically significant repressor. The Journal of Biological Chemistry. 1997-10-17, 272 (42). ISSN 0021-9258. PMID 9334248. doi:10.1074/jbc.272.42.26659. 
  36. ^ de Castro, M.; Elliot, S.; Kino, T.; Bamberger, C.; Karl, M.; Webster, E.; Chrousos, G. P. The non-ligand binding beta-isoform of the human glucocorticoid receptor (hGR beta): tissue levels, mechanism of action, and potential physiologic role. Molecular Medicine (Cambridge, Mass.). 1996-09, 2 (5) [2022-07-11]. ISSN 1076-1551. PMC 2230188可免费查阅. PMID 8898375. (原始内容存档于2022-03-31). 
  37. ^ van den Berg, J. D.; Smets, L. A.; van Rooij, H. Agonist-free transformation of the glucocorticoid receptor in human B-lymphoma cells. The Journal of Steroid Biochemistry and Molecular Biology. 1996-02, 57 (3-4) [2022-07-11]. ISSN 0960-0760. PMID 8645634. doi:10.1016/0960-0760(95)00271-5. (原始内容存档于2022-07-11). 
  38. ^ Stancato, L. F.; Silverstein, A. M.; Gitler, C.; Groner, B.; Pratt, W. B. Use of the thiol-specific derivatizing agent N-iodoacetyl-3-[125I]iodotyrosine to demonstrate conformational differences between the unbound and hsp90-bound glucocorticoid receptor hormone binding domain. The Journal of Biological Chemistry. 1996-04-12, 271 (15). ISSN 0021-9258. PMID 8621522. doi:10.1074/jbc.271.15.8831. 
  39. ^ Eggert, M.; Michel, J.; Schneider, S.; Bornfleth, H.; Baniahmad, A.; Fackelmayer, F. O.; Schmidt, S.; Renkawitz, R. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. The Journal of Biological Chemistry. 1997-11-07, 272 (45). ISSN 0021-9258. PMID 9353307. doi:10.1074/jbc.272.45.28471. 
  40. ^ 40.0 40.1 40.2 40.3 40.4 Zilliacus, J.; Holter, E.; Wakui, H.; Tazawa, H.; Treuter, E.; Gustafsson, J. A. Regulation of glucocorticoid receptor activity by 14--3-3-dependent intracellular relocalization of the corepressor RIP140. Molecular Endocrinology (Baltimore, Md.). 2001-04, 15 (4) [2022-07-11]. ISSN 0888-8809. PMID 11266503. doi:10.1210/mend.15.4.0624. (原始内容存档于2022-07-08). 
  41. ^ 41.0 41.1 Hittelman, A. B.; Burakov, D.; Iñiguez-Lluhí, J. A.; Freedman, L. P.; Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. The EMBO journal. 1999-10-01, 18 (19). ISSN 0261-4189. PMC 1171607可免费查阅. PMID 10508170. doi:10.1093/emboj/18.19.5380. 
  42. ^ Savory, J. G.; Préfontaine, G. G.; Lamprecht, C.; Liao, M.; Walther, R. F.; Lefebvre, Y. A.; Haché, R. J. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Molecular and Cellular Biology. 2001-02, 21 (3) [2022-07-11]. ISSN 0270-7306. PMID 11154266. doi:10.1128/MCB.21.3.781-793.2001. (原始内容存档于2022-07-11). 
  43. ^ Tazawa, Hiroshi; Osman, Waffa; Shoji, Yutaka; Treuter, Eckardt; Gustafsson, Jan-Ake; Zilliacus, Johanna. Regulation of subnuclear localization is associated with a mechanism for nuclear receptor corepression by RIP140. Molecular and Cellular Biology. 2003-06, 23 (12) [2022-07-11]. ISSN 0270-7306. PMID 12773562. doi:10.1128/MCB.23.12.4187-4198.2003. (原始内容存档于2022-02-18). 
  44. ^ Subramaniam, N.; Treuter, E.; Okret, S. Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. The Journal of Biological Chemistry. 1999-06-18, 274 (25). ISSN 0021-9258. PMID 10364267. doi:10.1074/jbc.274.25.18121. 
  45. ^ Stevens, Adam; Garside, Helen; Berry, Andrew; Waters, Charlotte; White, Anne; Ray, David. Dissociation of steroid receptor coactivator 1 and nuclear receptor corepressor recruitment to the human glucocorticoid receptor by modification of the ligand-receptor interface: the role of tyrosine 735. Molecular Endocrinology (Baltimore, Md.). 2003-05, 17 (5) [2022-07-11]. ISSN 0888-8809. PMID 12569182. doi:10.1210/me.2002-0320. (原始内容存档于2022-07-11). 
  46. ^ Schulz, Martin; Eggert, Martin; Baniahmad, Aria; Dostert, Anja; Heinzel, Thorsten; Renkawitz, Rainer. RU486-induced glucocorticoid receptor agonism is controlled by the receptor N terminus and by corepressor binding. The Journal of Biological Chemistry. 2002-07-19, 277 (29). ISSN 0021-9258. PMID 12011091. doi:10.1074/jbc.M203268200. 
  47. ^ Kucera, Tomas; Waltner-Law, Mary; Scott, Donald K.; Prasad, Ratna; Granner, Daryl K. A point mutation of the AF2 transactivation domain of the glucocorticoid receptor disrupts its interaction with steroid receptor coactivator 1. The Journal of Biological Chemistry. 2002-07-19, 277 (29). ISSN 0021-9258. PMID 12118039. doi:10.1074/jbc.M204013200. 
  48. ^ Bledsoe, Randy K.; Montana, Valerie G.; Stanley, Thomas B.; Delves, Chris J.; Apolito, Christopher J.; McKee, David D.; Consler, Thomas G.; Parks, Derek J.; Stewart, Eugene L.; Willson, Timothy M.; Lambert, Millard H. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell. 2002-07-12, 110 (1). ISSN 0092-8674. PMID 12151000. doi:10.1016/s0092-8674(02)00817-6. 
  49. ^ 49.0 49.1 49.2 Hsiao, Pei-Wen; Fryer, Christy J.; Trotter, Kevin W.; Wang, Weidong; Archer, Trevor K. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Molecular and Cellular Biology. 2003-09, 23 (17) [2022-07-11]. ISSN 0270-7306. PMID 12917342. doi:10.1128/MCB.23.17.6210-6220.2003. (原始内容存档于2021-08-03). 
  50. ^ Préfontaine, G. G.; Walther, R.; Giffin, W.; Lemieux, M. E.; Pope, L.; Haché, R. J. Selective binding of steroid hormone receptors to octamer transcription factors determines transcriptional synergism at the mouse mammary tumor virus promoter. The Journal of Biological Chemistry. 1999-09-17, 274 (38). ISSN 0021-9258. PMID 10480874. doi:10.1074/jbc.274.38.26713. 
  51. ^ Préfontaine, G. G.; Lemieux, M. E.; Giffin, W.; Schild-Poulter, C.; Pope, L.; LaCasse, E.; Walker, P.; Haché, R. J. Recruitment of octamer transcription factors to DNA by glucocorticoid receptor. Molecular and Cellular Biology. 1998-06, 18 (6) [2022-07-11]. ISSN 0270-7306. PMID 9584182. doi:10.1128/MCB.18.6.3416. (原始内容存档于2022-03-09). 
  52. ^ 52.0 52.1 Rao, Mira A.; Cheng, Helen; Quayle, Alandra N.; Nishitani, Hideo; Nelson, Colleen C.; Rennie, Paul S. RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. The Journal of Biological Chemistry. 2002-12-13, 277 (50). ISSN 0021-9258. PMID 12361945. doi:10.1074/jbc.M209741200. 
  53. ^ Nissen, R. M.; Yamamoto, K. R. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes & Development. 2000-09-15, 14 (18) [2022-07-11]. ISSN 0890-9369. PMID 10995388. doi:10.1101/gad.827900. (原始内容存档于2022-07-11). 
  54. ^ Caldenhoven, E.; Liden, J.; Wissink, S.; Van de Stolpe, A.; Raaijmakers, J.; Koenderman, L.; Okret, S.; Gustafsson, J. A.; Van der Saag, P. T. Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Molecular Endocrinology (Baltimore, Md.). 1995-04, 9 (4) [2022-07-11]. ISSN 0888-8809. PMID 7659084. doi:10.1210/mend.9.4.7659084. (原始内容存档于2022-07-11). 
  55. ^ Li, Gangyong; Wang, Shengfu; Gelehrter, Thomas D. Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-beta action. The Journal of Biological Chemistry. 2003-10-24, 278 (43). ISSN 0021-9258. PMID 12902338. doi:10.1074/jbc.M305350200. 
  56. ^ Song, C. Z.; Tian, X.; Gelehrter, T. D. Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proceedings of the National Academy of Sciences of the United States of America. 1999-10-12, 96 (21) [2022-07-11]. ISSN 0027-8424. PMID 10518526. doi:10.1073/pnas.96.21.11776. (原始内容存档于2022-07-11). 
  57. ^ Wallberg, A. E.; Neely, K. E.; Hassan, A. H.; Gustafsson, J. A.; Workman, J. L.; Wright, A. P. Recruitment of the SWI-SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor tau1 activation domain. Molecular and Cellular Biology. 2000-03, 20 (6) [2022-07-11]. ISSN 0270-7306. PMID 10688647. doi:10.1128/MCB.20.6.2004-2013.2000. (原始内容存档于2022-07-11). 
  58. ^ Lerner, Lorena; Henriksen, Melissa A.; Zhang, Xiaokui; Darnell, James E. STAT3-dependent enhanceosome assembly and disassembly: synergy with GR for full transcriptional increase of the alpha 2-macroglobulin gene. Genes & Development. 2003-10-15, 17 (20) [2022-07-11]. ISSN 0890-9369. PMID 14522952. doi:10.1101/gad.1135003. (原始内容存档于2022-07-04). 
  59. ^ Zhang, Z.; Jones, S.; Hagood, J. S.; Fuentes, N. L.; Fuller, G. M. STAT3 acts as a co-activator of glucocorticoid receptor signaling. The Journal of Biological Chemistry. 1997-12-05, 272 (49). ISSN 0021-9258. PMID 9388192. doi:10.1074/jbc.272.49.30607. 
  60. ^ Stöcklin, E.; Wissler, M.; Gouilleux, F.; Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature. 1996-10-24, 383 (6602) [2022-07-11]. ISSN 0028-0836. PMID 8878484. doi:10.1038/383726a0. (原始内容存档于2022-07-11). 
  61. ^ Makino, Y.; Yoshikawa, N.; Okamoto, K.; Hirota, K.; Yodoi, J.; Makino, I.; Tanaka, H. Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. The Journal of Biological Chemistry. 1999-01-29, 274 (5). ISSN 0021-9258. PMID 9915858. doi:10.1074/jbc.274.5.3182. 
  62. ^ Chang, C. J.; Chen, Y. L.; Lee, S. C. Coactivator TIF1beta interacts with transcription factor C/EBPbeta and glucocorticoid receptor to induce alpha1-acid glycoprotein gene expression. Molecular and Cellular Biology. 1998-10, 18 (10) [2022-07-11]. ISSN 0270-7306. PMID 9742105. doi:10.1128/MCB.18.10.5880. (原始内容存档于2022-07-11). 
  63. ^ Wakui, H.; Wright, A. P.; Gustafsson, J.; Zilliacus, J. Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3 eta protein. The Journal of Biological Chemistry. 1997-03-28, 272 (13). ISSN 0021-9258. PMID 9079630. doi:10.1074/jbc.272.13.8153. 
  64. ^ Pun, Frank W.; Liu, Bonnie Hei Man; Long, Xi; Leung, Hoi Wing; Leung, Geoffrey Ho Duen; Mewborne, Quinlan T.; Gao, Junli; Shneyderman, Anastasia; Ozerov, Ivan V.; Wang, Ju; Ren, Feng. Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An AI-Enabled Biological Target Discovery Platform. Frontiers in Aging Neuroscience. 2022, 14. ISSN 1663-4365. doi:10.3389/fnagi.2022.914017.