唯一素数
唯一素数(Unique prime)是指一个不为2、5(在十进位时),有以下性质的质数p:不存在其他质数q,其倒数1 / q的循环节长度和1 / p的循环节长度相等。唯一素数是在1980年代由Samuel Yates提出。
可以证明素数p其倒数的循环节长度为n若且唯若存在一自然数c使得下式成立(下面内容仅限于十进制范畴):
其中Φn(x)为n次的分圆多项式。至2010年为止,已经找到逾50个唯一素数或者有此性质的可能质数,但是小于10100的唯一素数只有23个。以下是这些唯一素数(OEIS数列A040017)及其循环节位数(OEIS数列A051627):
倒数循环节长度 | 素数 |
---|---|
1 | 3 |
2 | 11 |
3 | 37 |
4 | 101 |
10 | 9,091 |
12 | 9,901 |
9 | 333,667 |
14 | 909,091 |
24 | 99,990,001 |
36 | 999,999,000,001 |
48 | 9,999,999,900,000,001 |
38 | 909,090,909,090,909,091 |
19 | 1,111,111,111,111,111,111 |
23 | 11,111,111,111,111,111,111,111 |
39 | 900,900,900,900,990,990,990,991 |
62 | 909,090,909,090,909,090,909,090,909,091 |
120 | 100,009,999,999,899,989,999,000,000,010,001 |
150 | 10,000,099,999,999,989,999,899,999,000,000,000,100,001 |
106 | 9,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091 |
93 | 900,900,900,900,900,900,900,900,900,900,990,990,990,990,990,990,990,990,990,991 |
134 | 909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091 |
294 | 142,857,157,142,857,142,856,999,999,985,714,285,714,285,857,142,857,142,855,714,285,571,428,571,428,572,857,143 |
196 | 999,999,999,999,990,000,000,000,000,099,999,999,999,999,000,000,000,000,009,999,999,999,999,900,000,000,000,001 |
倒数循环节长度294位的唯一素数类似7的倒数(0.142857142857142857...)。
接续上表的第24个唯一素数有128位,倒数循环节长度为320位,可以写成(932032)2+1,其中下标n表示前面的一个数字或一组数字会重复出现n次。
所有循环单位素数都是唯一素数。依照循环单位素数及循环单位可能素数出现的频率来看,唯一素数非常的少见,不过数学家们仍强烈推论有无穷多个唯一素数。
至2010年为止,循环单位(10270343-1)/9是已知最大的可能唯一素数[1]。
至1996年为止,确定是质数的最大唯一素数是(101132 + 1)/10001,若用前文中的表示法,可以表示为(99990000)141+ 1,其倒数循环节长度为为2264位,后来陆续证明更大的唯一素数,至2010年为止,确定是质数的最大唯一素数有10081位数[2]。
二进制中的唯一质数
3, 5, 7, 11, 13, 17, 19, 31, 41, 43, 73, 127, 151, 241, 257, 331, 337, 683, ...... (OEIS数列A144755):
其循环节长度分别为: 2, 4, 3, 10, 12, 8, 18, 5, 20, 14, 9, 7, 15, 24, 16, 30, 21, 22, ......(OEIS数列A161508):
这当中包含了所有费马质数(循环节长度为2的乘方),梅森质数(循环节长度为质数)及瓦格斯塔夫质数(循环节长度为奇质数的两倍)
以下为不超过264之二进制唯一质数列表:
倒数循环节长度 | 素数 | 二进位表示法 |
---|---|---|
2 | 3 | 11 |
4 | 5 | 101 |
3 | 7 | 111 |
10 | 11 | 1011 |
12 | 13 | 1101 |
8 | 17 | 1 0001 |
18 | 19 | 1 0011 |
5 | 31 | 1 1111 |
20 | 41 | 10 1001 |
14 | 43 | 10 1011 |
9 | 73 | 100 1001 |
7 | 127 | 111 1111 |
15 | 151 | 1001 0111 |
24 | 241 | 1111 0001 |
16 | 257 | 1 0000 0001 |
30 | 331 | 1 0100 1011 |
21 | 337 | 1 0101 0001 |
22 | 683 | 10 1010 1011 |
26 | 2,731 | 1010 1010 1011 |
42 | 5,419 | 1 0101 0010 1011 |
13 | 8,191 | 1 1111 1111 1111 |
34 | 43,691 | 1010 1010 1010 1011 |
40 | 61,681 | 1111 0000 1111 0001 |
32 | 65,537 | 1 0000 0000 0000 0001 |
54 | 87,211 | 1 0101 0100 1010 1011 |
17 | 131,071 | 1 1111 1111 1111 1111 |
38 | 174,763 | 10 1010 1010 1010 1011 |
27 | 262,657 | 100 0000 0010 0000 0001 |
19 | 524,287 | 111 1111 1111 1111 1111 |
33 | 599,479 | 1001 0010 0101 1011 0111 |
46 | 2,796,203 | 10 1010 1010 1010 1010 1011 |
56 | 15,790,321 | 1111 0000 1111 0000 1111 0001 |
90 | 18,837,001 | 1 0001 1111 0110 1110 0000 1001 |
78 | 22,366,891 | 1 0101 0101 0100 1010 1010 1011 |
62 | 715,827,883 | 10 1010 1010 1010 1010 1010 1010 1011 |
31 | 2,147,483,647 | 111 1111 1111 1111 1111 1111 1111 1111 |
80 | 4,278,255,361 | 1111 1111 0000 0000 1111 1111 0000 0001 |
120 | 4,562,284,561 | 1 0000 1111 1110 1110 1111 0000 0001 0001 |
126 | 77,158,673,929 | 1 0001 1111 0111 0000 0011 1110 1110 0000 1001 |
150 | 1,133,836,730,401 | 1 0000 0111 1111 1101 1110 1111 1000 0000 0010 0001 |
86 | 2,932,031,007,403 | 10 1010 1010 1010 1010 1010 1010 1010 1010 1010 1011 |
98 | 4,363,953,127,297 | 11 1111 1000 0000 1111 1110 0000 0011 1111 1000 0001 |
49 | 4,432,676,798,593 | 100 0000 1000 0001 0000 0010 0000 0100 0000 1000 0001 |
69 | 10,052,678,938,039 | 1001 0010 0100 1001 0010 0101 1011 0110 1101 1011 0111 |
65 | 145,295,143,558,111 | 1000 0100 0010 0101 0010 1001 0110 1011 0101 1011 1101 1111 |
174 | 96,076,791,871,613,611 | 1 0101 0101 0101 0101 0101 0101 0100 1010 1010 1010 1010 1010 1010 1011 |
77 | 581,283,643,249,112,959 | 1000 0001 0001 0010 0010 0110 0100 1100 1101 1001 1011 1011 0111 0111 1111 |
93 | 658,812,288,653,553,079 | 1001 0010 0100 1001 0010 0100 1001 0011 0110 1101 1011 0110 1101 1011 0111 |
122 | 768,614,336,404,564,651 | 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1011 |
61 | 2,305,843,009,213,693,951 | 1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 |
85 | 9,520,972,806,333,758,431 | 1000 0100 0010 0001 0100 1010 0101 0010 1011 0101 1010 1101 0111 1011 1101 1111 |
192 | 18,446,744,069,414,584,321 | 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0001 |
参考资料
- ^ PRP Records: Probable Primes Top 10000. [2013-01-11]. (原始内容存档于2010-02-25).
- ^ The Top Twenty Unique; Chris Caldwell. [2013-01-11]. (原始内容存档于2020-11-20).